Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Aging ; 3(4): 380-390, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37117787

RESUMO

Neural stem cells (NSCs) generate new neurons throughout life in the mammalian hippocampus1. Advancing age leads to a decline in neurogenesis, which is associated with impaired cognition2,3. The cellular mechanisms causing reduced neurogenesis with advancing age remain largely unknown. We genetically labeled NSCs through conditional recombination driven by the regulatory elements of the stem-cell-expressed gene GLI family zinc finger 1 (Gli1) and used chronic intravital imaging to follow individual NSCs and their daughter cells over months within their hippocampal niche4,5. We show that aging affects multiple steps, from cell cycle entry of quiescent NSCs to determination of the number of surviving cells, ultimately causing reduced clonal output of individual NSCs. Thus, we here define the developmental stages that may be targeted to enhance neurogenesis with the aim of maintaining hippocampal plasticity with advancing age.


Assuntos
Disfunção Cognitiva , Células-Tronco Neurais , Camundongos , Animais , Neurônios/metabolismo , Neurogênese/fisiologia , Hipocampo , Disfunção Cognitiva/metabolismo , Mamíferos
2.
Nat Neurosci ; 24(2): 225-233, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33349709

RESUMO

Neural stem cells (NSCs) generate neurons throughout life in the mammalian hippocampus. However, the potential for long-term self-renewal of individual NSCs within the adult brain remains unclear. We used two-photon microscopy and followed NSCs that were genetically labeled through conditional recombination driven by the regulatory elements of the stem cell-expressed genes GLI family zinc finger 1 (Gli1) or achaete-scute homolog 1 (Ascl1). Through intravital imaging of NSCs and their progeny, we identify a population of Gli1-targeted NSCs showing long-term self-renewal in the adult hippocampus. In contrast, once activated, Ascl1-targeted NSCs undergo limited proliferative activity before they become exhausted. Using single-cell RNA sequencing, we show that Gli1- and Ascl1-targeted cells have highly similar yet distinct transcriptional profiles, supporting the existence of heterogeneous NSC populations with diverse behavioral properties. Thus, we here identify long-term self-renewing NSCs that contribute to the generation of new neurons in the adult hippocampus.


Assuntos
Hipocampo/crescimento & desenvolvimento , Células-Tronco Neurais/fisiologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/biossíntese , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Linhagem da Célula , Feminino , Perfilação da Expressão Gênica , Hipocampo/citologia , Proteínas de Homeodomínio/biossíntese , Proteínas de Homeodomínio/genética , Microscopia Intravital , Masculino , Metalotioneína 3 , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microscopia de Fluorescência por Excitação Multifotônica , Regeneração Nervosa , Proteínas do Tecido Nervoso/biossíntese , Proteínas do Tecido Nervoso/genética , Análise de Célula Única , Proteína GLI1 em Dedos de Zinco/biossíntese , Proteína GLI1 em Dedos de Zinco/genética
3.
Development ; 146(13)2019 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-31227641

RESUMO

The 2nd SY-Stem Symposium - a symposium for 'the next generation of stem cell researchers' - was held on the 21-23 March 2019 at the Vienna BioCenter in Austria. After the great success of the initial SY-Stem meeting in 2018, this year's event again focused on the work of young scientists. Here, we summarize the impressive amount of new research covering stem cell-related fields that was discussed at the meeting.


Assuntos
Pesquisa Biomédica/tendências , Pesquisa com Células-Tronco , Células-Tronco/citologia , Biologia de Sistemas , Animais , Áustria , Pesquisa Biomédica/organização & administração , Congressos como Assunto/organização & administração , Congressos como Assunto/normas , Humanos , Medicina Regenerativa/organização & administração , Medicina Regenerativa/tendências , Biologia de Sistemas/métodos , Biologia de Sistemas/tendências
4.
Cell Metab ; 28(6): 881-894.e13, 2018 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-30146488

RESUMO

Little is known about the metabolism of quiescent endothelial cells (QECs). Nonetheless, when dysfunctional, QECs contribute to multiple diseases. Previously, we demonstrated that proliferating endothelial cells (PECs) use fatty acid ß-oxidation (FAO) for de novo dNTP synthesis. We report now that QECs are not hypometabolic, but upregulate FAO >3-fold higher than PECs, not to support biomass or energy production but to sustain the tricarboxylic acid cycle for redox homeostasis through NADPH regeneration. Hence, endothelial loss of FAO-controlling CPT1A in CPT1AΔEC mice promotes EC dysfunction (leukocyte infiltration, barrier disruption) by increasing endothelial oxidative stress, rendering CPT1AΔEC mice more susceptible to LPS and inflammatory bowel disease. Mechanistically, Notch1 orchestrates the use of FAO for redox balance in QECs. Supplementation of acetate (metabolized to acetyl-coenzyme A) restores endothelial quiescence and counters oxidative stress-mediated EC dysfunction in CPT1AΔEC mice, offering therapeutic opportunities. Thus, QECs use FAO for vasculoprotection against oxidative stress-prone exposure.


Assuntos
Carnitina O-Palmitoiltransferase/metabolismo , Metabolismo Energético , Ácidos Graxos/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , NADP/metabolismo , Receptor Notch1/metabolismo , Animais , Proliferação de Células , Células HEK293 , Homeostase , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Oxirredução , Estresse Oxidativo
5.
Science ; 359(6376): 658-662, 2018 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-29439238

RESUMO

Neural stem and progenitor cells (NSPCs) generate neurons throughout life in the mammalian hippocampus. We used chronic in vivo imaging and followed genetically labeled individual NSPCs and their progeny in the mouse hippocampus for up to 2 months. We show that NSPCs targeted by the endogenous Achaete-scute homolog 1 (Ascl1) promoter undergo limited rounds of symmetric and asymmetric divisions, eliciting a burst of neurogenic activity, after which they are lost. Further, our data reveal unexpected asymmetric divisions of nonradial glia-like NSPCs. Cell fates of Ascl1-labeled lineages suggest a developmental-like program involving a sequential transition from a proliferative to a neurogenic phase. By providing a comprehensive description of lineage relationships, from dividing NSPCs to newborn neurons integrating into the hippocampal circuitry, our data offer insight into how NSPCs support life-long hippocampal neurogenesis.


Assuntos
Divisão Celular , Hipocampo/citologia , Hipocampo/crescimento & desenvolvimento , Células-Tronco Neurais/citologia , Neurogênese , Neuroimagem , Neurônios/citologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Morte Celular , Divisão Celular/genética , Camundongos , Rede Nervosa/citologia , Rede Nervosa/crescimento & desenvolvimento , Neurogênese/genética , Neuroglia/citologia , Regiões Promotoras Genéticas
6.
Cell Rep ; 20(9): 2144-2155, 2017 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-28854364

RESUMO

Hippocampal neurogenesis is important for certain forms of cognition, and failing neurogenesis has been implicated in neuropsychiatric diseases. The neurogenic capacity of hippocampal neural stem/progenitor cells (NSPCs) depends on a balance between quiescent and proliferative states. Here, we show that the rate of fatty acid oxidation (FAO) regulates the activity of NSPCs. Quiescent NSPCs show high levels of carnitine palmitoyltransferase 1a (Cpt1a)-dependent FAO, which is downregulated in proliferating NSPCs. Pharmacological inhibition and conditional deletion of Cpt1a in vitro and in vivo leads to altered NSPC behavior, showing that Cpt1a-dependent FAO is required for stem cell maintenance and proper neurogenesis. Strikingly, manipulation of malonyl-CoA, the metabolite that regulates levels of FAO, is sufficient to induce exit from quiescence and to enhance NSPC proliferation. Thus, the data presented here identify a shift in FAO metabolism that governs NSPC behavior and suggest an instructive role for fatty acid metabolism in regulating NSPC activity.


Assuntos
Ácidos Graxos/metabolismo , Células-Tronco Neurais/metabolismo , Animais , Carnitina O-Palmitoiltransferase/deficiência , Carnitina O-Palmitoiltransferase/metabolismo , Ciclo Celular , Proliferação de Células , Hipocampo/enzimologia , Malonil Coenzima A/metabolismo , Camundongos Knockout , Células-Tronco Neurais/citologia , Células-Tronco Neurais/enzimologia , Neurogênese , Oxirredução
7.
Neuron ; 93(4): 777-791.e3, 2017 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-28231465

RESUMO

The developmental mechanisms regulating the number of adult neural stem cells (aNSCs) are largely unknown. Here we show that the cleavage plane orientation in murine embryonic radial glia cells (RGCs) regulates the number of aNSCs in the lateral ganglionic eminence (LGE). Randomizing spindle orientation in RGCs by overexpression of Insc or a dominant-negative form of Lgn (dnLgn) reduces the frequency of self-renewing asymmetric divisions while favoring symmetric divisions generating two SNPs. Importantly, these changes during embryonic development result in reduced seeding of aNSCs. Interestingly, no effects on aNSC numbers were observed when Insc was overexpressed in postnatal RGCs or aNSCs. These data suggest a new mechanism for controlling aNSC numbers and show that the role of spindle orientation during brain development is highly time and region dependent.


Assuntos
Células-Tronco Adultas/citologia , Diferenciação Celular/fisiologia , Divisão Celular/fisiologia , Polaridade Celular/fisiologia , Proliferação de Células/fisiologia , Células-Tronco Neurais/citologia , Animais , Ciclo Celular/fisiologia , Camundongos Transgênicos , Fuso Acromático
8.
J Neurosci ; 36(28): 7407-14, 2016 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-27413151

RESUMO

UNLABELLED: The hippocampal dentate gyrus is critically involved in learning and memory. However, methods for imaging the activity of its principal neurons, the dentate gyrus granule cells, are missing. Here we demonstrate chronic two-photon imaging of granule cell population activity in awake mice using a cortical window implant that leaves the hippocampal formation intact and does not lead to obvious alteration of animal behavior. Using virus delivery, we targeted expression of genetically encoded calcium indicators specifically to dentate gyrus granule cells. Calcium imaging of granule cell activity 600-800 µm below the hippocampal surface was facilitated by using 1040 nm excitation of the red indicator R-CaMP1.07, but was also achieved using the green indicator GCaMP6s. We found that the rate of calcium transients was increased during wakefulness relative to an extremely low rate during anesthesia; however, activity still remained sparse with, on average, approximately one event per 2-5 min per cell across the granule cell population. Comparing periods of running on a ladder wheel and periods of resting, we furthermore identified state-dependent differences in the active granule cell population, with some cells displaying highest activity level during running and others during resting. Typically, cells did not maintain a clear state preference in their activity pattern across days. Our approach opens new avenues to elucidate granule cell function, plasticity mechanisms, and network computation in the adult dentate gyrus. SIGNIFICANCE STATEMENT: We describe a technique that allows for chronic, functional imaging of dentate gyrus granule cells in awake, behaving mice in an intact hippocampal circuitry using genetically encoded calcium indicators. This novel approach enables the analyses of individual granule cell activity over time and provides a powerful tool to elucidate the mechanisms underlying structural and functional plasticity of the adult dentate gyrus.


Assuntos
Giro Denteado/citologia , Rede Nervosa/fisiologia , Neurônios/fisiologia , Animais , Cálcio/metabolismo , Giro Denteado/diagnóstico por imagem , Comportamento Exploratório/fisiologia , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microscopia Confocal , Rede Nervosa/diagnóstico por imagem , Neurônios/classificação , Optogenética , Vigília
9.
Development ; 142(21): 3661-74, 2015 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-26395491

RESUMO

Multiciliated cells are abundant in the epithelial surface of different tissues, including cells lining the walls of the lateral ventricles in the brain and the airway epithelium. Their main role is to control fluid flow and defects in their differentiation are implicated in many human disorders, such as hydrocephalus, accompanied by defects in adult neurogenesis and mucociliary disorder in the airway system. Here we show that Mcidas, which is mutated in human mucociliary clearance disorder, and GemC1 (Gmnc or Lynkeas), previously implicated in cell cycle progression, are key regulators of multiciliated ependymal cell generation in the mouse brain. Overexpression and knockdown experiments show that Mcidas and GemC1 are sufficient and necessary for cell fate commitment and differentiation of radial glial cells to multiciliated ependymal cells. Furthermore, we show that GemC1 and Mcidas operate in hierarchical order, upstream of Foxj1 and c-Myb transcription factors, which are known regulators of ependymal cell generation, and that Notch signaling inhibits GemC1 and Mcidas function. Our results suggest that Mcidas and GemC1 are key players in the generation of multiciliated ependymal cells of the adult neurogenic niche.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/metabolismo , Epêndima/citologia , Células Ependimogliais/citologia , Células Ependimogliais/metabolismo , Neurogênese , Proteínas Nucleares/metabolismo , Animais , Proteínas de Transporte/genética , Proteínas de Ciclo Celular/genética , Epêndima/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Camundongos , Proteínas Nucleares/genética , Proteínas Proto-Oncogênicas c-myb/metabolismo , Receptores Notch/metabolismo , Transdução de Sinais , Células-Tronco/citologia , Células-Tronco/metabolismo
10.
Cell Rep ; 11(11): 1679-85, 2015 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-26074082

RESUMO

Demyelinating diseases are characterized by a loss of oligodendrocytes leading to axonal degeneration and impaired brain function. Current strategies used for the treatment of demyelinating disease such as multiple sclerosis largely rely on modulation of the immune system. Only limited treatment options are available for treating the later stages of the disease, and these treatments require regenerative therapies to ameliorate the consequences of oligodendrocyte loss and axonal impairment. Directed differentiation of adult hippocampal neural stem/progenitor cells (NSPCs) into oligodendrocytes may represent an endogenous source of glial cells for cell-replacement strategies aiming to treat demyelinating disease. Here, we show that Ascl1-mediated conversion of hippocampal NSPCs into mature oligodendrocytes enhances remyelination in a diphtheria-toxin (DT)-inducible, genetic model for demyelination. These findings highlight the potential of targeting hippocampal NSPCs for the treatment of demyelinated lesions in the adult brain.


Assuntos
Lesões Encefálicas/patologia , Doenças Desmielinizantes/patologia , Hipocampo/citologia , Bainha de Mielina/metabolismo , Células-Tronco Neurais/citologia , Neurogênese , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Doenças Desmielinizantes/etiologia , Toxina Diftérica/toxicidade , Hipocampo/crescimento & desenvolvimento , Hipocampo/patologia , Camundongos , Camundongos Endogâmicos C57BL , Células-Tronco Neurais/metabolismo
12.
Nat Commun ; 4: 2125, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23839311

RESUMO

The mechanisms governing the expansion of neuron number in specific brain regions are still poorly understood. Enlarged neuron numbers in different species are often anticipated by increased numbers of progenitors dividing in the subventricular zone. Here we present live imaging analysis of radial glial cells and their progeny in the ventral telencephalon, the region with the largest subventricular zone in the murine brain during neurogenesis. We observe lineage amplification by a new type of progenitor, including bipolar radial glial cells dividing at subapical positions and generating further proliferating progeny. The frequency of this new type of progenitor is increased not only in larger clones of the mouse lateral ganglionic eminence but also in cerebral cortices of gyrated species, and upon inducing gyrification in the murine cerebral cortex. This implies key roles of this new type of radial glia in ontogeny and phylogeny.


Assuntos
Células Ependimogliais/citologia , Células-Tronco Neurais/citologia , Neurogênese , Neurônios/citologia , Telencéfalo/citologia , Animais , Diferenciação Celular , Linhagem da Célula/fisiologia , Proliferação de Células , Embrião de Mamíferos , Células Ependimogliais/metabolismo , Genes Reporter , Proteínas de Fluorescência Verde , Camundongos , Camundongos Transgênicos , Células-Tronco Neurais/metabolismo , Neurônios/metabolismo , Telencéfalo/embriologia , Telencéfalo/metabolismo , Imagem com Lapso de Tempo , Técnicas de Cultura de Tecidos
13.
Cell ; 153(3): 535-49, 2013 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-23622239

RESUMO

Evolution of the mammalian brain encompassed a remarkable increase in size of the cerebral cortex, which includes tangential and radial expansion. However, the mechanisms underlying these key features are still largely unknown. Here, we identified the DNA-associated protein Trnp1 as a regulator of cerebral cortex expansion in both of these dimensions. Gain- and loss-of-function experiments in the mouse cerebral cortex in vivo demonstrate that high Trnp1 levels promote neural stem cell self-renewal and tangential expansion. In contrast, lower levels promote radial expansion, with a potent increase of the number of intermediate progenitors and basal radial glial cells leading to folding of the otherwise smooth murine cerebral cortex. Remarkably, TRNP1 expression levels exhibit regional differences in the cerebral cortex of human fetuses, anticipating radial or tangential expansion. Thus, the dynamic regulation of Trnp1 is critical to control tangential and radial expansion of the cerebral cortex in mammals.


Assuntos
Córtex Cerebral/crescimento & desenvolvimento , Proteínas Nucleares/metabolismo , Sequência de Aminoácidos , Animais , Proteínas de Ciclo Celular , Córtex Cerebral/citologia , Proteínas de Ligação a DNA , Embrião de Mamíferos/metabolismo , Técnicas de Silenciamento de Genes , Humanos , Camundongos , Dados de Sequência Molecular , Células-Tronco Neurais/metabolismo , Neuroglia/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/genética , Ativação Transcricional
14.
Nat Commun ; 3: 1076, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23011130

RESUMO

Current approaches to monitor and quantify cell division in live cells, and reliably distinguish between acytokinesis and endoreduplication, are limited and complicate determination of stem cell pool identities. Here we overcome these limitations by generating an in vivo reporter system using the scaffolding protein anillin fused to enhanced green fluorescent protein, to provide high spatiotemporal resolution of mitotic phase. This approach visualizes cytokinesis and midbody formation as hallmarks of expansion of stem and somatic cells, and enables distinction from cell cycle variations. High-resolution microscopy in embryonic heart and brain tissues of enhanced green fluorescent protein-anillin transgenic mice allows live monitoring of cell division and quantitation of cell cycle kinetics. Analysis of cell division in hearts post injury shows that border zone cardiomyocytes in the infarct respond with increasing ploidy, but not cell division. Thus, the enhanced green fluorescent protein-anillin system enables monitoring and measurement of cell division in vivo and markedly simplifies in vitro analysis in fixed cells.


Assuntos
Ciclo Celular/fisiologia , Divisão Celular/fisiologia , Mitose/fisiologia , Animais , Encéfalo/embriologia , Encéfalo/metabolismo , Ciclo Celular/genética , Divisão Celular/genética , Proteínas Contráteis/genética , Proteínas Contráteis/metabolismo , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Citometria de Fluxo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Coração/embriologia , Humanos , Técnicas In Vitro , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos , Mitose/genética , Infarto do Miocárdio/genética , Infarto do Miocárdio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...